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Statistical Power (A needle in a haystack)

- Find causal mutation



Statistical Power (A needle in a haystack)

• Altshuler et al. (2000) discussed retested 13 
published associations of SNPs with type II diabetes 
in an independent population. 

Only one was significant. 



Statistical Power (A needle in a haystack)

• Terwilliger and Weiss  (1998)



http://shiny-eio.upc.edu/bne/efectos2/ http://shinyapps.org/apps/PPV/

http://shiny-eio.upc.edu/bne/efectos2/
http://shiny-eio.upc.edu/bne/efectos2/


Statistical Power (A needle in a haystack)

Chapter 3



power of GWAS experiments (common variants)
Marker heritability=

R. D. Ball (2013) Genomewide Association studies and Genome-Wide prediction.



power of GWAS experiments (uncommon variants)

R. D. Ball (2013) Genomewide Association studies and Genome-Wide prediction.



power of GWAS experiments (rare variants)

R. D. Ball (2013) Genomewide Association studies and Genome-Wide prediction.



power of GWAS experiments

● Sample size
● Magnitude of effect 
● MAF marker
● MAF qtl
● Range of LD
● Likelihood of the model
● Experimental design
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• MAIN DIFFICULTIES

• Low effect size
• Low LD

• When the allele-frequencies are mismatched, power is dramatically 
reduced

• We never know true disease allele frequency, so having a range of 
allele frequencies across markers is helpful

power of GWAS experiments



• When  all markers are included in the model (as regressor or GRM), 
the SNP effect estimates are strongly regressed to zero.

• Also,
Strong LD between Markers

        the test are not independent
markers share information
huge computational cost

•

power of GWAS experiments



power of bacterial GWAS experiments

• Main difficulties
– All of the common GWAS
– small sample size
– high LD (reduces the number of independent tests)
– Causal mutation that appear only at a handful of vertices

• Unique characteristics of bacterial populations
– Clonal reproduction
– Strong population stratification
– Varying degrees of recombinations

• Even larger proportion of Type I errors



power of bacterial GWAS experiments

https://github.com/francesccoll/powerbacgwas

https://github.com/francesccoll/powerbacgwas


power of bacterial GWAS experiments

Recommendations for GWAS
• Use gene level variation: 

– haploid SNPs
– indels
– mobile genetic elements (MGE)
– insertion sequences
– plasmids and conjugative elements
– Copy Number Variations (CNVs)
– Sequence Inversions

• Use k-mers as variables
• Replication analysis in the lab is “easy”.      Validate your results in an 

independent trial!



power of bacterial GWAS experiments

bacterial-GWAS are in its infancy, and many challenges need to be 
addressed



introduction_to_gwas/5.power_and_significance/StatisticalPower_exercise.R

power of GWAS experiments

https://github.com/filippob/introduction_to_gwas
https://github.com/filippob/introduction_to_gwas/tree/master/5.power_and_significance


POPULATION 
STRATIFICATION



Population stratification

• Distribution of genotypes 
differs between cases 
and controls

• Might conclude that allele 
A (or genotype AA) 
related to disease

Pop1 Pop1

Pop2 Pop2



• If cases and controls not 
well-matched ethnically:
– Disease is more common in one 

population than another AND
– allele frequencies differ between 

populations at markers (chromosomal 
positions) unrelated to outcome

• Any allele more common in 
population with increased risk of 
disease may appear to be 
associated with disease

Population stratification

Separated populations

Marchini et al., (2004)



Population stratification

• Causes.
Unequal distribution of alleles may result from:

– Subpopulations: sample made up of more than one distinct population, 
and cases and controls made up of different proportion of one or more of 
the subpopulations

– Admixture: sample made up of individuals each with differing fractions of 
ancestry from distinct populations (e.g. African American individuals with 
differing levels of Caucasian ancestry) and the average level of admixture 
differs between cases and controls



Population stratification



Population stratification

• What can you do about this?
– Carefully match cases and controls in the data collection stage

• Easy at gross level, difficult when structure is subtle
• Recommend recording grandparental birthplace

– Use a family-based study design

– Detect and/or control for stratification in analysis stage



Population stratification

• Methods to detect and control for stratification
– Test for stratification
– Genomic control (GC)
– Structured analysis (SA)
– Principal components
– Genetic covariance structure (Kinship matrix)



Population stratification

• Methods to detect and control for stratification
– Test for stratification

• Rationale: if stratification exists, should see association with disease 
status across many loci, not just the candidate locus of interest

1. Genotype a set of L unlinked (independent) marker loci in all samples 
of study (e.g. 15 to 20 polymorphic markers).

2. Assume markers are chosen randomly so that the probability that 
any one marker is tightly linked to a disease locus is very low.

3. Compare differences between genotype or allele frequencies 
between cases and controls using the χ2 test for each marker.

4. To test for stratification, sum individual marker test statistics to get 
final χ2 statistic with L degrees of freedom.



Population stratification

• Methods to detect and control for stratification
– Test for stratification

• H0: the allele frequencies at each of the marker loci are the same in 
the case and control groups.

• HA: the allele frequency distribution across the L loci differs between 
the case and control groups.

• Strategy attractive for its simplicity and ability to formally test, but it 
doesn’t offer a solution.

(Pritchard, JK and Rosenberg NA (1999) Use of unlinked genetic markers to detect population stratification in association studies. Am J Hum Genet 65: 220-228)



Population stratification

• Methods to detect and control for stratification
– Genomic Control

• Rationale: if population stratification exists in the study population then it should 
be present at many markers across the genome

• Strategy:
1. Genotype a set of L unlinked (independent) marker loci in all samples of study 

(e.g. 20 to 50 SNPs)
2. Assume markers are chosen randomly so that the probability that any one 

marker is tightly linked to a disease locus is very low
3. Compare differences between genotype or allele frequencies between cases 

and controls using the χ2 test for each marker.
4. Adjust test statistic for association based on the inflation (λ) seen across a 

collection of unlinked (independent) markers



Population stratification

• Methods to detect and control for stratification
– Genomic Control

• Assume constant inflation factor  (λ)  across genome (it is thought to be true 
regardless [almost] of allele frequency, but cannot be generalized)

• If λ = 1 then no population stratification 
• If λ < 1 then set to 1 (bounded λ)

Adjust χ 2 statistic for each markers of interest:

(Devlin B and Roeder K (1999) Genomic control for association studies. Biometrics 55:369-387)



Population stratification

• Methods to detect and control for stratification
– Structured analysis

• Rationale: genotype data on a sample of individuals for many markers 
can give us information about sub populations in the sample

• Strategy: assign and control for population membership, performing 
analysis in each population (reduce statistical power)

• Performed in STRUCTURE or STRAT type analyses

(Pritchard JK, Stephens M and Donnelly P (1999) Inference of population structure using multilocus genotype data. Genetics 155: 945-959)



Population stratification

• Methods to detect and control for stratification
– Principal Component Analysis

• Rationale: Similar to SA approach in that goal is to use many markers to 
capture variation that is due to ancestry (GWAS lot of markers)

• Strategy:
1. Get a covariate (or set of covariates) for each individual that represents 

their genetic ancestry from PC.
2. Adjust phenotype and genotypes for ancestry based on the covariate that 

represents ancestry (Test association of PC to detect PS, or visualization)
3. Adjust phenotype (outcome) and genotype (predictor) for ancestry (PC), in 

the association test as usual

Price et al. (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics 38:904-909



Population stratification

• Methods to detect and control for stratification
– Adjust Genetic Covariance (Kinship matrix).

• Rationale:Similar to PCA approach, but uses the whole genomic variability 
in the data. Additionally, it adjust the model by an overall genomic 
background. (need lot of markers to be efficient)

• Strategy:
1. Calculate a genomic relationship matrix (GRM) 
2. Include a polygenic effect in a mixed model taking into account GRM

3. Alternative, PC from the GRM and implement PCA strategy



Population stratification

• Comparison of methods
– stratification level

Zhang F, Wang Y, Deng H-W (2008) Comparison of Population-Based Association Study Methods 
Correcting for Population Stratification. PLoS ONE 3(10): e3392. 
doi:10.1371/journal.pone.0003392



Population stratification

• Comparison of methods
– sample size

Zhang F, Wang Y, Deng H-W (2008) Comparison of Population-Based Association Study Methods 
Correcting for Population Stratification. PLoS ONE 3(10): e3392. 
doi:10.1371/journal.pone.0003392



Population stratification -bacterial GWAS

• Haplotype organisms 
– entire chromosome is clonally copied. LD extends across entire genome
– all sites are perfectly correlated (not possible to know which mutation is 

causal)
• causal mutation from an ancestral

phylogeny branch, is not distinguible 
of new non-causal mutations
(aka lineage association).



Population stratification -bacterial GWAS

Traditional solutions
• Focus on variants within a relevant region
• Detect homoplasic variants (appeared in several lineages)
• Find recombinants that are independent of genetic background (lineages)

Recommendations for GWAS
• Genomic control or Cochran-Mantel-Haenszel (CMH) test
• Use PCA as covariates (may not work for recombinants from distant 

ancestry)
– Still confounders that require additional methods



Population stratification -bacterial GWAS

1. Homologous recombination
a. Long range LD may still exist even after adjusting for PCA
b. Admixture methods that make use of recombination patterns may 

help 
2. Selection

a. Microb population structure may be due to adaptation (e.g. AMR)
b. Can lead to panmictic populations (with lots of recombinants)
c. Use longitudinal samples (unless the phenotype of interest is 

longitudinal itself, e.g. time to disease sympthoms, because it’s 
adding confounders)

d. Use mixed models (GRM) that account for relatedness.



Population stratification -bacterial GWAS

PCA
Phylogenetic relatedness in a 
mixed model (~random effect)

GWAS based on phylogenetics 
(as a random effect or GRM)



Experimental design



Experimental design

• Collaboration, collaboration, collaboration

– with many disciplines epidemiologists, biostatisticians, bioinformatics, 
clinicians, geneticists, etc.

– across funded research centers to pool and share results

• Analysis methods and techniques are constantly changing 

• High dimensional data (p >>>>> n)
– Large p, small n problem



Experimental design



Experimental design



Experimental design

SNP effect 
(genotype or 
dosage 
codification)



Experimental design



Experimental design



Experimental design

1. QUALITY CONTROL
Phenotype
• Make sure to use a model that fits your phenotypic distribution.
• Control for outliers, and define covariates
• Consider the use of YD, DYD or DRP instead of raw phenotype (if possible)
SNPs

Filter process to end up with the highest quality set of SNPs
• SNP genotyping rates: usually >95%
• Sample call rates: usually >95%
• Minor allele frequency: ranges >0.002 - 0.05 
• Hardy Weinberg Equilibrium: p-value threshold ranges >10-3 - 10-6 
• Mendelian inconsistencies - need “trios”
Retain approximately 75-80% (or more) of the SNPs



Experimental design

2. POPULATION STRATIFICATION
Classic issue of confounding
• Test for PS
• Correct for PS



Experimental design

3. ADJUSTMENT OF COVARIATES
Rationale for adjustment in GWAS

1. Confounding

2. Increase ability to predict outcome or explain more variation in the trait -- “what 
can genetics provide beyond established risk factors?”

What did everyone else do?
• Replication or comparing results across studies requires a similar analysis 

strategy and adjustment model.



Experimental design

4. MULTIPLE TESTING
• Choose significance level
• Perform a correction test (Bonferroni, FDR,..)

• Share your summary statistics as supplementary material (allows 
meta-analysis)



Experimental design

5. INTERPRETING THE RESULTS
So you think you have a significant SNP?

• Direct causal relationship
• Indirect association - linkage disequilibrium 
• Spurious association - population stratification or false positive



Experimental design

6. REPLICATION


