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Statistical Power (A needle in a haystack)

GENETICS

Can SNPs Deliver on
Susceptibility Genes?

Minor differences in people’s DNA ought to predict their risk of certain
diseases. Is research on so-called SNPs living up to its promise?

« Altshuler et al. (2000) discussed retested 13
published associations of SNPs with type |l diabetes
in an independent population.

Only one was significant.
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Statistical Power (A needle in a haystack)

« Terwilliger and Weiss (1998)

Figure 4

The distribution of all reported p-values from
association studies in either American Journal
of Medical Genetics (Neuropsychiatric

Genetics) or Psychiatric Genetics in 1997 is
shown. A total of 222 reported p-values are |

graphed in the figure, and an additional 39

tests were listed as ‘nonsignificant’ at the .
0.05 level with no statistical details in the

manuscript. If all of the results were obtained

under the null hypothesis, the expected i
distribution would be uniform. As can be seen

in this figure, there is very good fit to the 2
uniform expectation (x250) = 12.98; p > 0.87),

indicating that the published p-values are !
consistent with the absence of gene effects in X
all the published analyses. 0
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P(Real effect|Signif.) =

" Real effect, significant No effect, significant
~ Real effect, not significant * No effect, not significant
N

P(Real effect n Signif.) 0.24

=0.873

P(Signit.) ~0.275
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power of GWAS experiments (common variants)
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power of GWAS experiments (uncommon variants) =

Allele freq=0.05; Marker heritability = 0.05 Allele freq=0.05; Marker heritability = 0.001
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power of GWAS experiments (rare variants) N
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power of GWAS experiments

Sample size
Magnitude of effect
MAF marker

MAF qtl

Range of LD
Likelihood of the model
Experimental design
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power of GWAS experiments

Sample size
Magnitude of effect
MAF marker

MAF qtl

Range of LD
Likelihood of the model
Experimental design
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power of GWAS experiments

* MAIN DIFFICULTIES

* Low effect size
e LowlLD

* When the allele-frequencies are mismatched, power is dramatically
reduced

* We never know true disease allele frequency, so having a range of
allele frequencies across markers is helpful
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power of GWAS experiments

* When all markers are included in the model (as regressor or GRM),
the SNP effect estimates are strongly regressed to zero.
« Also,
Strong LD between Markers
the test are not independent
markers share information
huge computational cost
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power of bacterial GWAS experiments

« Main difficulties
— All of the common GWAS
— small sample size
— high LD (reduces the number of independent tests)
— Causal mutation that appear only at a handful of vertices

» Unique characteristics of bacterial populations
— Clonal reproduction
— Strong population stratification
— Varying degrees of recombinations

« Even larger proportion of Type | errors

e



power of bacterial GWAS experiments

https://github.com/francesccoll/powerbacgwas

PowerBacGWAS: Power calculations for Bacterial
GWAS

Usage

Overview

Input files, steps and scripts used to implement PowerBacGWAS pipeline:

e “m)
vef_to_plink_filespy wary_to_plgak_files.p

-
H EN

I
GWAS bash seript

plot_gwas_runs.R
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https://github.com/francesccoll/powerbacgwas

power of bacterial GWAS experiments

Recommendations for GWAS

« Use gene level variation:
— haploid SNPs
— indels
— mobile genetic elements (MGE)
— insertion sequences
— plasmids and conjugative elements
— Copy Number Variations (CNVs)
— Sequence Inversions

« Use k-mers as variables

& - Replication analysis in the lab is “easy”. mp Validate your results in an

independent trial!

o
)
-
..
[ ]
o\

S R B2 R e TS

:
=
9,.



power of bacterial GWAS experiments

VN bacterial-GWAS are in its infancy, and many challenges need to be
addressed




power of GWAS experiments

introduction_to_gwas/5.power_and_significance/StatisticalPower_exercise.R
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https://github.com/filippob/introduction_to_gwas
https://github.com/filippob/introduction_to_gwas/tree/master/5.power_and_significance
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STRATIFICATION

&ﬁu.ﬂaaz



Population stratification

Pop1

“aa
“ Aa

AA

Cases Controls

Pop2

 Distribution of genotypes
differs between cases
and controls

« Might conclude that allele
A (or genotype AA)
related to disease
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Population stratification

_ * If cases and controls not
Separated populations well-matched ethnically:
— Disease is more common in one

P°W’ ol s R population than another AND
— allele frequencies differ between
e populations at markers (chromosomal

positions) unrelated to outcome

, * Any allele more common in
population with increased risk of

— disease may appear to be
contos associated with disease

Genotype -aa .Aa .AA

Marchini et al., (2004)




Population stratification i

« Causes.
Unequal distribution of alleles may result from:

— Subpopulations: sample made up of more than one distinct population,
and cases and controls made up of different proportion of one or more of
the subpopulations

— Admixture: sample made up of individuals each with differing fractions of
ancestry from distinct populations (e.g. African American individuals with
differing levels of Caucasian ancestry) and the average level of admixture
differs between cases and controls
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Population stratification \Jt/
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Population stratification

« What can you do about this?

& - Carefully match cases and controls in the data collection stage
» Easy at gross level, difficult when structure is subtle
« Recommend recording grandparental birthplace

@ — Use a family-based study design

é\‘ — Detect and/or control for stratification in analysis stage




Population stratification M

« Methods to detect and control for stratification

— Test for stratification

— Genomic control (GC)

— Structured analysis (SA)

— Principal components

— Genetic covariance structure (Kinship matrix)
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Population stratification \J}/

« Methods to detect and control for stratification
— Test for stratification
« Rationale: if stratification exists, should see association with disease
status across many loci, not just the candidate locus of interest

1. Genotype a set of L unlinked (independent) marker loci in all samples
of study (e.g. 15 to 20 polymorphic markers).

2. Assume markers are chosen randomly so that the probability that
any one marker is tightly linked to a disease locus is very low.

3. Compare differences between genotype or allele frequencies
between cases and controls using the x? test for each marker.

4. To test for stratification, sum individual marker test statistics to get
final x? statistic with L degrees of freedom.
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Population stratification \Jt/

Methods to detect and control for stratification
— Test for stratification

* H,: the allele frequencies at each of the marker loci are the same in
the case and control groups.

* H,: the allele frequency distribution across the L loci differs between
the case and control groups.

» Strategy attractive for its simplicity and ability to formally test, but it
doesn’t offer a solution.

(Pritchard, JK and Rosenberg NA (1999) Use of unlinked genetic markers to detect population stratification in association studies. Am J Hum Genet 65: 220-228)
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Population stratification \Jt/

» Methods to detect and control for stratification
— Genomic Control
» Rationale: if population stratification exists in the study population then it should

be present at many markers across the genome
« Strategy:
1. Genotype a set of L unlinked (independent) marker loci in all samples of study
(e.g. 20 to 50 SNPs)
2. Assume markers are chosen randomly so that the probability that any one
marker is tightly linked to a disease locus is very low
3. Compare differences between genotype or allele frequencies between cases
and controls using the x? test for each marker.
4. Adjust test statistic for association based on the inflation (A) seen across a
) coJiec’giorl of unIinked-(indep.)endent) pgarkers . i
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Population stratification \M/

« Methods to detect and control for stratification

— Genomic Control
» Assume constant inflation factor (A) across genome (it is thought to be true
regardless [almost] of allele frequency, but cannot be generalized)

« If A =1 then no population stratification
« If A <1 then setto 1 (bounded A)

Adjust x 2 statistic for each markers of interest: 42 = x
A

(Devlin B and Roeder K (1999) Genomic control for association studies. Biometrics 55:369-387)
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Population stratification

« Methods to detect and control for stratification

— Structured analysis
» Rationale: genotype data on a sample of |nd|V|duaIs for many markers
can give us information about sub populations in the sample

« Strategy: assign and control for population membership, performing
analysis in each population (reduce statistical power)

» Performed in STRUCTURE or STRAT type analyses

(Pritchard JK, Stephens M and Donnelly P (1999) Inference of population structure using multilocus genotype data. Genetics 155: 945-959)
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Population stratification \Jt/

« Methods to detect and control for stratification

— Principal Component Analysis
» Rationale: Similar to SA approach in that goal is to use many markers to
capture variation that is due to ancestry (GWAS lot of markers)
» Strategy:
1. Get a covariate (or set of covariates) for each individual that represents
their genetic ancestry from PC.
2. Adjust phenotype and genotypes for ancestry based on the covariate that
represents ancestry (Test association of PC to detect PS, or visualization)

3. Adjust phenotype (outcome) and genotype (predictor) for ancestry (PC), in
the association test as usual

Price et al. (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics 38:904-909
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Population stratification =

Methods to detect and control for stratification
— Adjust Genetic Covariance (Kinship matrix).
» Rationale:Similar to PCA approach, but uses the whole genomic variability

in the data. Additionally, it adjust the model by an overall genomic
background. (need lot of markers to be efficient)

+ Strategy: T
1. Calculate a genomic relationship matrix (GRM) T gy ARy
2. Include a polygenic effect in a mixed model taking into account GRM

y =41+ X3+ Zu+e u~N(0,Ac?)
3. Alternative, PC from the GRM and implement PCA strategy
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Population stratification

« Comparison of methods
— stratification level

Zhang F, Wang Y, Deng H-W (2008) Comparison of Population-Based Association Study Methods
Correcting for Population Stratification. PLoS ONE 3(10): e3392.
doi:10.1371/journal.pone.0003392
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Figure 1. Performance of the four analytical methods in stratified populations with stratification levels varying from 0.3-0.3 to
0.5-0.1 (sample size = 1200, frequency of disease susceptible allele =0.20+0.02 and number of AlMs =40).
doi:10.1371/journal.pone.0003392.g001
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Population stratification fh

« Comparison of methods L T T T
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Figure 2. Performance of the four analy!lcal methods in stratified populations with sample sizes varying from 400 to 2000
Zhang F, Wang Y, Deng H-W (2008) Comparison of Population-Based Association Study Methods (stratification level =0.5-0.1, f ptible allele =0.20+0.02 and number of AlMs =40).
Correcting for Population Stratification. PLoS ONE 3(10): e3392. doi10.1371/journal.pone.0003392.9002
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Population stratification -bacterial GWAS \J/

« Haplotype organisms
— entire chromosome is clonally copied. LD extends across entire genome
— all sites are perfectly correlated (not possible to know which mutation is
causal)

« causal mutation from an ancestral
phylogeny branch, is not distinguible
of new non-causal mutations
(aka lineage association).

a) b)

Lineage




Population stratification -bacterial GWAS

Traditional solutions

* Focus on variants within a relevant region

« Detect homoplasic variants (appeared in several lineages)

* Find recombinants that are independent of genetic background (lineages)

Recommendations for GWAS

« Genomic control or Cochran-Mantel-Haenszel (CMH) test
« Use PCA as covariates (may not work for recombinants from distant
ancestry)
— Still confounders that require additional methods
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Population stratification -bacterial GWAS

1. Homologous recombination

a. Long range LD may still exist even after adjusting for PCA

b. Admixture methods that make use of recombination patterns may
help

2. Selection

a. Microb population structure may be due to adaptation (e.g. AMR)

b. Can lead to panmictic populations (with lots of recombinants)

c. Use longitudinal samples (unless the phenotype of interest is
longitudinal itself, e.g. time to disease sympthoms, because it’s
adding confounders)

d. Use mixed models (GRM) that account for relatedness.
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Population stratification -bacterial GWAS

Plasmodium falciparum Mycobacterium tuberculosis
b Population confounding Phylogenetic confounding

POA© (e T ) GWAS based on phylogenetics
forprinepel sompenent: phy%%*ﬁﬂﬁ‘ﬁ’—) bemdonphiegenetis J (as a random effect or GRM)

relatedness in a
J mixed modg|l (~random effect) l
d Combined with human GWAS data Modelled spatial spread of resistance Functionally validated in vitro

0 7.5 pgmtt 15 pg mit-+
<0.0001
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Experimental design




Experimental design

« Collaboration, collaboration, collaboration

— with many disciplines epidemiologists, biostatisticians, bioinformatics,
clinicians, geneticists, etc.

— across funded research centers to pool and share results

* Analysis methods and techniques are constantly changing

* High dimensional data (p >>>>> n)
— Large p, small n problem
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Experimental design

Exploratory
Data
Analysis




Experimental design
*Phenotypic
*phenotypes
Exploratory -lﬁ_ﬁslduayls
*Covarlales
Data +Genotypic
*MAF

AnaIYSiS HWE, Call Rate, ..

*Missing rates, Impulation

* Model
GWAS » Software
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Experimental design
*Phenotypic

Exploratory [t
Data -Genotyps

Ana|y5is .HWE. Call Rate, .

*Missing rates, Impulation

y=XB+Sa+Qv+Zu+e

* Model
GWAS » Software




Experimental design

* Phenotypic

Exploratory [Estisie
p ry .go-l/(:;:laltes

Data *Genotypic

*MAF

AnaIYSiS -HWE, Call Rate, ..

*Missing rates, Impulation

. ]  GWAS

* Model
» Software
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Experimental design

* Phenotypic

Exploratory [Eitiwie
*Covariates
Data *Genotypic

AnaIYSiS :‘:::JF[ Call Rate, ..

*Missing rates, Impulation

GWAS

* Model
» Software

* Manhattan plot

* gg-plots
* Functional analyses
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Experimental design B

1. QUALITY CONTROL
Phenotype

« Make sure to use a model that fits your phenotypic distribution.
« Control for outliers, and define covariates
« Consider the use of YD, DYD or DRP instead of raw phenotype (if possible)

SNPs
Filter process to end up with the highest quality set of SNPs
» SNP genotyping rates: usually >95%
« Sample call rates: usually >95%
* Minor allele frequency: ranges >0.002 - 0.05
« Hardy Weinberg Equilibrium: p-value threshold ranges >103- 10
* Mendelian inconsistencies - need “trios”
Retaln approxmately 75-80% (or more) of the SNPs

&ﬂ b G ieiis ooy 3



Experimental design

2. POPULATION STRATIFICATION
Classic issue of confounding

« Testfor PS -

« Correct for PS e
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Experimental design UY

3. ADJUSTMENT OF COVARIATES
Rationale for adjustment in GWAS

1. Confounding

2. Increase ability to predict outcome or explain more variation in the trait -- “what
can genetics provide beyond established risk factors?”

What did everyone else do?

* Replication or comparing results across studies requires a similar analysis
strategy and adjustment model.




Experimental design M

4. MULTIPLE TESTING

Choose significance level
Perform a correction test (Bonferroni, FDR,..)

Share your summary statistics as supplementary material (allows
meta-analysis)
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Experimental design

5. INTERPRETING THE RESULTS
So you think you have a significant SNP?

« Direct causal relationship
* Indirect association - linkage disequilibrium
» Spurious association - population stratification or false positive

Other SNP

SN
\ Population A /
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Experimental design

6. REPLICATION
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