Multiple Testing GWAS

Christian Werner

(Quantitative geneticist and biostatistician) **EiB, CIMMYT**, Texcoco (Mexico)

Filippo Biscarini

(Biostatistician, bioinformatician and quantitative geneticist) **CNR-IBBA**, Milan (Italy)

Oscar González-Recio

OscarGenomics

(Computational biologist and quantitative geneticist) **INIA-UPM**, Madrid (Spain)

simple testing

- **- inference →** is there a **difference** between groups?
	- e.g. AA vs AB vs BB
- **- significance** is related to the **size** and **variance** of this difference
- **p-value**: prob of obtaining such an extreme t statistics under H₀ given we repeat the experiment an infinite number of times
	- P-value $\lt \alpha \rightarrow$ small likelihood of the data under $H_0 \rightarrow$ significant difference
	- P-value > $\alpha \rightarrow$ there is a high chance of observing these data if there is no difference between groups
- α = 0.05 \rightarrow threshold: 5% of rejecting H₀ when it is true (Type I error).
	- **- false positive**: significant result when there is no difference (H₀ is true)

multiple testing

41

- **- many tests → many false positives**
	- e.g. 2000 (independent) tests, α =0.05 \rightarrow How many expected false positives? 100 false positives by chance alone
- multiple testing problem
- A typical GWAS conducts hundreds of thousands to millions of tests independently, each for a single marker and with its own false-positive probability.
	- many SNPs, many statistical tests, many p-values (large p, small n problem)

How to cope with the problem

- 1. Increase the sample size (e.g. Bio Banks)
- 2. Reduce the number of tests
	- Based on LD
	- Choose relevant regions (functional analysis)
- 3. Decrease the significance threshold
	- **○ Arbitrary significance level (**e.g. 5x10-8**)**
	- **○ Bonferroni correction**
	- **○ False discovery rate**
	- E *○ q* **values** (*important pitfalls*)
		- **○ Permutation analysis**
		- **○ Go Bayesian...**

Bonferroni correction

- Bonferroni, mathematician (1892 1960)
- **● adjust** the significance threshold:

New significance threshold $\le \alpha/m$

[m: number of tests (markers)]

- Bonferroni correction tends to be too conservative
	- few false positives
	- many false negatives

Courses

False discovery rate (FDR)

Decrease the significance threshold

1) If I apply a threshold alpha to decide on significance, how much can I trust the results? 2) Where should I draw a line (threshold) of significance so that at most e.g. 10% of results are false positives?

False discovery rate (FDR)

- **● FDR:** how many of the positive results are false positives?
- Benjamini & Hochberg (1995), Storey (2002), Storey & Tibshirani (2003)
- **- Significance level = 0.05** \rightarrow 5% of all tests on average will be false positives (assuming independency)
- $FDR = 0.05 \rightarrow 5\%$ of **significant** tests will on average be false positives

fewer false positives!

Permutation tests

- Determine the significance of a result by randomly reshuffling the data and recalculating the test statistic.
	- \circ This allows to test the null hypothesis that the observed difference between two groups is due to chance, rather than a real difference between the groups.
- Permutation tests are often used when the assumptions of traditional parametric tests are not met, or when the sample size is small.
- They are also useful when the data is not normally distributed, or when the groups being compared are not independent.

Permutation tests

Bayesian inference

In Bayesian inference, the probability of a hypothesis is

$$
p(\theta|\mathbf{y}) = \frac{p(\mathbf{y}|\theta)p(\theta)}{p(\mathbf{y})} \propto p(\mathbf{y}|\theta)p(\theta)
$$

- \circ where P(θ |y) is the updated probability of the effect given the new evidence, $P(y|\theta)$ is the likelihood of the evidence given the effect, $P(\theta)$ is the prior probability of the effect, and $P(y)$ is the probability of the evidence.
- Make inferences of the posterior distribution using McMC algorithms (Gibbs sampling, acceptance rejection, Metropolis-Hasting)

Bayesian inference

- What is the mean of the posterior distribution and its standard deviation?
- Does it contain zero?

What is the probability of the effect being larger than a relevant magnitude $(e.g. +1)$.

● Is it a sufficient probability (e.g. 80%)

Possible to combine Bayesian inference and permutation test

Bayesian inference

REMEMBER

• Correlation does not imply causation

https://xkcd.com/552/

Make your rationale choice

NEXT LECTURE

Power of GWAS experiments

Physalia Courses

q-values

● q-values: proxies for FDR based on the **distribution of p-values**

Physalia Courses

q-values

● q-values: proxies for FDR based on the **distribution of p-values**

- the q-value approach tries to find the proportion of significant results which are likely to be false positives
- intuitively, it finds the height (density) at which the distribution of p-values flattens out

- the q-value approach tries to find the proportion of significant results which are likely to be false positives
- intuitively, it finds the height (density) at which the distribution of p-values flattens out

here the distribution is similar to the case where there is no actual difference

this proportion of false positives is then incorporated in the calculation of adjusted p-values (**q-values**)

interpretation of q-values

- *Significance level* = $0.01 \rightarrow$ probability of the p-value under H_0
- q-value = $0.02 \rightarrow$ probability of the SNP being a false positive
- *Significance level* = $0.01 \rightarrow 1\%$ chance of false positives (e.g. 7900 SNPs \rightarrow 79 false positives expected)
- q-value = $0.02 \rightarrow 2\%$ of positive results may be false positives (e.g. 800 SNPs with q-value ≤ 0.02 \rightarrow 16 false positives expected)

- What's **wrong** with **q-values**?
	- \circ They assume p-value is the probability of rejecting the null hypothesis when it is true
	- They do not consider that p-values are drawn from a probability distribution, and assume an infinite repetition of the experiment (obtaining different p-values for each experiment).