
Multiple Testing
GWAS

Christian Werner
(Quantitative geneticist and biostatistician) EiB, CIMMYT, Texcoco (Mexico)

Filippo Biscarini 
(Biostatistician, bioinformatician and quantitative geneticist) CNR-IBBA, Milan (Italy)

Oscar González-Recio
(Computational biologist and quantitative geneticist) INIA-UPM, Madrid (Spain)

OscarGenomics

HerrFalloppio



simple testing

- inference → is there a difference between groups?
- e.g. AA vs AB vs BB

- significance is related to the size and variance of this difference
- p-value: prob of obtaining such an extreme t statistics under H0 given we 

repeat the experiment an infinite number of times
- P-value < 𝛂→ small likelihood of the data under H0 → significant difference
- P-value >𝛂→ there is a high chance of observing these data if there is no 

difference between groups
- 𝛂 = 0.05 →  threshold: 5% of rejecting H0 when it is true (Type I error).

- false positive: significant result when there is no difference (H0 is true) 



multiple testing

- many tests → many false positives
- e.g. 2000 (independent) tests, 𝜶=0.05 → How many expected false positives?

100 false positives by chance alone
- multiple testing problem

- A typical GWAS conducts hundreds of thousands to millions of tests 
independently, each for a single marker and with its own false-positive 
probability.

- many SNPs, many statistical tests, many p-values (large p, small n 
problem)



How to cope with the problem

1. Increase the sample size
(e.g. Bio Banks)

2. Reduce the number of tests
○ Based on LD
○ Choose relevant regions (functional analysis)

3. Decrease the significance threshold
○ Arbitrary significance level (e.g. 5x10-8)
○ Bonferroni correction
○ False discovery rate
○ q values (important pitfalls)
○ Permutation analysis
○ Go Bayesian...



Bonferroni correction

● Bonferroni, mathematician (1892 - 1960)
● adjust the significance threshold:

● New significance threshold ⩽ 𝜶/m 
[m: number of tests (markers)]

● Bonferroni correction tends to be too conservative
● few false positives
● many false negatives



False discovery rate (FDR)

0.010
0.025
0.026
0.031
0.042
0.049
0.050
0.065
0.078
0.101
0.125
0.128
...

List of ordered 
p-values

1) If I apply a threshold alpha to decide on 
significance, how much can I trust the results?

2) Where should I draw a line (threshold) of 
significance so that at most e.g. 10% of results 
are false positives?

● Decrease the significance threshold



False discovery rate (FDR)

● FDR: how many of the positive results are false positives? 

● Benjamini & Hochberg (1995), Storey (2002), Storey & Tibshirani (2003)

- Significance level = 0.05 → 5% of all tests on average will be false 
positives (assuming independency)

- FDR = 0.05 → 5% of significant tests will on average be false positives

fewer false positives!



Permutation tests

● Determine the significance of a result by randomly reshuffling the data and 
recalculating the test statistic. 
○ This allows to test the null hypothesis that the observed difference 

between two groups is due to chance, rather than a real difference 
between the groups. 

● Permutation tests are often used when the assumptions of traditional 
parametric tests are not met, or when the sample size is small.

● They are also useful when the data is not normally distributed, or when the 
groups being compared are not independent.



Permutation tests

Apply your method or 
hypothesis test of 
choice
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Apply your method or 
hypothesis test of 
choice

x large number of times 
(e.g. x1000)

Permutate your data

Non-significant, within 95%HPD

Significant, out of 95%HPD



Bayesian inference

● In Bayesian inference, the probability of a hypothesis is 
updated using Bayes' theorem as follows

○ where P(𝜽 |y) is the updated probability of the effect given the new 
evidence, P(y|𝜽 ) is the likelihood of the evidence given the effect, P(𝜽 ) is 
the prior probability of the effect, and P(y) is the probability of the 
evidence.

○ Make inferences of the posterior distribution using McMC algorithms 
(Gibbs sampling, acceptance rejection, Metropolis-Hasting)



Bayesian inference

● What is the mean of the posterior distribution and its standard deviation?
● Does it contain zero?



Bayesian inference

● What is the probability of the effect being larger than a relevant magnitude 
(e.g. +1).

● Is it a sufficient probability (e.g. 80%)

Possible to combine Bayesian inference 
and permutation test



REMEMBER

● Correlation does not imply causation

Make your rationale choice



Power of GWAS experiments

NEXT LECTURE



q-values

● q-values: proxies for FDR based on the distribution of 
p-values



q-values

● q-values: proxies for FDR based on the distribution of 
p-values

no significant 
differences

significant 
differences



q-values

● the q-value approach tries to find the proportion of significant 
results which are likely to be false positives 

● intuitively, it finds the height (density) at which the 
distribution of p-values flattens out 
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q-values

● this proportion of false positives is then incorporated in the 
calculation of adjusted p-values (q-values)

here the distribution is similar to the 
case where there is no actual 
difference



interpretation of q-values 

● Significance level = 0.01 → probability of the 
p-value under H0 

● q-value = 0.02 → probability of the SNP being a 
false positive

● Significance level = 0.01 → 1% chance of false 
positives (e.g. 7900 SNPs → 79 false positives 
expected)

● q-value = 0.02 → 2% of positive results may be 
false positives (e.g. 800 SNPs with q-value ≤ 0.02 
→ 16 false positives expected)

 

 

interpretation of the 
single SNP

interpretation of the 
distribution of SNPs



q-values

● What’s wrong with q-values?

○ They assume p-value is the probability of rejecting the null hypothesis 
when it is true

○ They do not consider that p-values are drawn from a probability 
distribution, and assume an infinite repetition of the experiment (obtaining 

different p-values for each experiment).


